Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts.
نویسندگان
چکیده
Glucose metabolism in the heart requires oxidation of cytosolic NADH from glycolysis. This study examines shuttling reducing equivalents from the cytosol to the mitochondria via the activity and expression of the oxoglutarate-malate carrier (OMC) in rat hearts subjected to 2 wk (Hyp2, n = 6) and 10 wk (Hyp10, n = 8) of pressure overload hypertrophy vs. that of sham-operated rats (Sham2, n = 6; and Sham10, n = 7). Moderate aortic banding produced increased atrial natriuretic factor (ANF) mRNA expression at 2 and 10 wk, but only at 10 wk did hearts develop compensatory hypertrophy (33% increase, P < 0.05). Isolated hearts were perfused with the short-chain fatty acid [2,4-(13)C(2)]butyrate (2 mM) and glucose (5 mM) to enable dynamic-mode (13)C NMR of intermediate exchange across OMC. OMC flux increased before the development of hypertrophy: Hyp2 = 9.6 +/- 2.1 vs. Sham2 = 3.7 +/- 1.2 muM.min(-1).g dry wt(-1), providing an increased contribution of cytosolic NADH to energy synthesis in the mitochondria. With compensatory hypertrophy, OMC flux returned to normal: Hyp10 = 3.9 +/- 1.7 vs. Sham10 = 3.8 +/- 1.2 muM.g(-1).min(-1). Despite changes in activity, no differences in OMC expression occurred between Hyp and Sham groups. Elevated OMC flux represented augmented cytosolic NADH shuttling, coupled to increased nonoxidative glycolysis, in response to hypertrophic stimulus. However, development of compensatory hypertrophy moderated the pressure-induced elevation in OMC flux, which returned to control levels. The findings indicate that the challenge of pressure overload increases cytosolic redox state and its contribution to mitochondrial oxidation but that hypertrophy, before decompensation, alleviates this stress response.
منابع مشابه
Regulation of mitochondrial [NADH] by cytosolic [Ca2+] and work in trabeculae from hypertrophic and normal rat hearts.
Pressure overload hypertrophy has previously been shown to reduce contractility but paradoxically to increase O2 consumption rates at a given force. Because O2 consumption rates are related to mitochondrial [NADH] ([NADH]m), we tested the hypothesis that with hypertrophy, control of [NADH]m may be altered. Left ventricular trabeculae were isolated from banded and control rat hearts, and fluores...
متن کاملRegulation of Mitochondrial [NADH] by Cytosolic [Ca] and Work in Trabeculae From Hypertrophic and Normal Rat Hearts
Pressure overload hypertrophy has previously been shown to reduce contractility but paradoxically to increase O2 consumption rates at a given force. Because O2 consumption rates are related to mitochondrial [NADH] ([NADH]m), we tested the hypothesis that with hypertrophy, control of [NADH]m may be altered. Left ventricular trabeculae were isolated from banded and control rat hearts, and fluores...
متن کاملIn vivo profile of myocardial energy metabolism of pressure-overloaded rat.
Cardiac energy metabolism of pressure-overloaded rat hearts was examined under in vivo and in vitro conditions. Two, 4 and 6 weeks after constriction of the abdominal artery, the hemodynamic and metabolic profiles of hearts in vivo and of perfused hearts were determined. Significant increases in left ventricular weight/body weight (30 to 45% increase relative to the sham group), systolic and di...
متن کاملRegional ischemia in hypertrophic Langendorff-perfused rat hearts.
Myocardial hypertrophy decreases the muscle mass-to-vascularization ratio, thereby changing myocardial perfusion. The effect of these changes on myocardial oxygenation in hypertrophic Langendorff-perfused rat hearts was measured using epimyocardial NADH videofluorimetry, whereby ischemic myocardium displays a high fluorescence intensity. Hypertrophic hearts, in contrast to control hearts, devel...
متن کاملLimited functional and metabolic improvements in hypertrophic and healthy rat heart overexpressing the skeletal muscle isoform of SERCA1 by adenoviral gene transfer in vivo.
Adenoviral gene transfer of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a to the hypertrophic heart in vivo has been consistently reported to lead to enhanced myocardial contractility. It is unknown if the faster skeletal muscle isoform, SERCA1, expressed in the whole heart in early failure, leads to similar improvements and whether metabolic requirements are maintained during an adrenergi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 5 شماره
صفحات -
تاریخ انتشار 2007